Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Sifting through teaspoons of clay and sand scraped from the floors of caves, German researchers have managed to isolate ancient human DNA — without turning up a single bone. Their new technique, described in a study published on Thursday in the journal. Sifting through teaspoons of clay and sand scraped from the floors of caves, German researchers have managed to isolate ancient human DNA — without turning up a single bone.

It’s a bit like discovering that you can extract gold dust from the air,” said Adam Siepel, a population geneticist at Cold Spring Harbor Laboratory.

An absolutely amazing and exciting paper,” added David Reich, a genetics professor. Harvard who focuses on ancient DNA. Until recently, the only way to study the genes of ancient humans like the Neanderthals and their cousins, the Denisovans, was to recover DNA from fossil bones.

But they are scarce and hard to find, which has greatly limited research into where early humans lived and how widely they ranged. The only Denisovan bones and teeth that scientists have, for example, come from a single cave in Siberia.

Palm Beach, FL